Game Audio: Final Project

Dave Maynard

Medieval Encounters: The Quest for Nerk
“1950’s Aliens Invade the Kingdom”

Custom Midjourney Al Generated Artwork

Game Audio: Final Project
Dave Maynard

Turned this into that ©
in 2 Weeks

Game Audio: Final Project

Dave Maynard

NOTE

You can hit the [ESCape] key to exit this assignment program.
You can also hit the [1] key to reset the level without exiting.

These are merely code snippets; the complete code encompasses much more than what is presented here, simplified for the sake of clarity.

ResetLevel()
Q)
foreach (emitter in reverbEmitter)

if (Input.GetKeyUp(KeyCode.Escape)) {

{ emitter.Stop();

Application.Quit(); Reverh Emitter }
} o e
Element 0

playerController.StopFMOD();
SceneManager.lLoadScene(SceneManager.GetActiveScene().name);

Element 1

if (Input.GetKeyUp(KeyCode.Alphal))
{

Player Controller

ResetLevel();

} StopFMOD()

I've incorporated a Singleton

Game State M lass int))
thzrgfoj ot whioh gﬁ:{’ of musicEv.stop(FMOD.Studio.STOP_MODE . IMMEDIATE):

the game's hierarchy. It's designed flyingEv.stop(FMOD. Studio.STOP_MODE.IMMEDIATE);

to detect when the [Escape] key is
pressed and ensures the program
exits gracefully. It's also designed
to detect when the [1] key is
pressed to reset the level without
exiting the program.

For those who might be curious, these methods are how | ensure
that all FMOD audio, including the music and the reverb zones, are
forced to stop and the level reloads.

Game Audio: Final Project
Story of “1950’s Aliens Invade the Kingdom”

&

Our player lands on a He’s sad to find his buddy But YAY there are cows
planet with a rich crashed and his ship is on fire! to abduct on this planet.
Kingdom. He’s looking But maybe he’s around He’s happy again!

for his buddy “Nerk” somewhere.

who came here last

Wednesday.

Game Audio: Final Project

Story of “1950’s Aliens Invade the Kingdom”

If our player finds Nerk’s friend with all the snacks he If our player finds the graveyard he is locked in and LOSES!
WINS !

3DRoo...

Timeline

Logic Tracks

Game Audio: Final Project: FMOD Creation & Integration

Fountain
Drip_01.wav
Drip_02.wav
Drip_03.wav
Drip_04.wav
Drip_05.wav
Drip_06.wav
Drip_07.wav
Drip_08.wav
Drip_09.wav
Drip_10.wav

Fountain.wav

Scatterer

0O &6 0 5 (©

@ Spatializer

B ~ FMOD Studio Event Emitter

Object Start
None

The 3D room features a fountain that
plays a looping water stream sound.
Additionally, there are 10 sporadic
dripping sounds that are played by the
scatterer instrument.

| adjusted the emitter distances in Unity
by using the override attenuation feature.

Game Audio: Final Project: FMOD Creation & Integration

Ambien... X

ooo The ambient timeline includes a continuous loop of park sounds with
no human voices. Additionally, it features two scatterer instruments

' One randomly plays seven distinct bird calls, and another that
randomly emits five varieties of wind sounds. | have fine-tuned the
parameters of the scatterer instruments, such as polyphony,
minimum and maximum spawn intervals, and minimum and
maximum scatter distances, to achieve a blend that | thought best fit
the scene.

_ 1o HEH{olHE o HA

Amb Scatterer Instrument

Master Frequency Scatterer

Playlist

[|
Bird_01.wav e [rime] Tempo | 0O & & 9 (0)

Amb_Background.wav

owee T
owe o

Bird_02.wav
Bird_03.wav

L =
Bird_04.wav i50ms 200sec

Bird_05.wav

Add Instrument

Bird_06.wav

Scatterer Instrument
Bird_07.wav Master Frequency Scatterer Playlist
Wind_01.wav ‘ e JETSRIEON) 0 © wind 01
Wind_02.wav C | %)

Wind_03.wav 7 20%)
Wind_04.wav 0 ommn [None | @ Wind.

800 ms -6.00 sec

Wind_05.wav Add Instrument

CowPick...

Timeline

Logic Tracks

Game Audio: Final Project: FMOD Creation & Integration

Multi Instrument

Moo_1.wav
Moo_2.wav
Moo_3.wav
Moo_4.wav
Moo _5.wav

Moo_6.wav

Events
Q-
v Master Bank
3DRoom
Ambience
CowPickup
Flying

Music

Made sure the
“CowPickup” event was
in the Master Bank.

Master Playlist

TR

- St AT
C Yo Too

Master Track Yes, that is me making the “moo sounds” for the cow © Utilizing the multi-
instrument, | incorporated six distinct "moo" sounds and combined them with a
single teleport sound that features three varied "whoosh" effects.

| did rename this Event timeline, the details of which, including the rationale, are discussed
in the "Extra" section of this write-up.

Game Audio: Final Project: FMOD Creation & Integration

Flying
Engine_Glitch_01.wav
Engine_Glitch_02.wav
Engine_Glitch_03.wav
Engine_Glitch_04.wav
Enging_Glitch_05.wav
UFO.wav

Banks

3DRoom
Ambience
CowPickup
Flying
Music

Assets

Made sure the “Flying”
event was in the Master
Bank.

Master

e Flying/UFO.wav

00:00.000 / 00:05.100

Yes, that is also me making the main engine
sounds using my mouth © along with a few other
sounds baked in. | employed the scatterer
instrument to integrate five unique engine glitching
sounds.

By using the ship's speed data from the game
engine, | automated the adjustment of the overall
volume(s) and the spawn rate of the engine
glitches.

Game Audio: Final Project: FMOD Creation & Integration

Timeline change InitPlayDistan...
.

Logic Tracks

| start

Music Following the specifications of the assignment, | created an Initial Music piece, Change
Music, and both Win and Loss Stingers. My approach to the compositions was influenced
by the style of 1950s science fiction, with a comedic twist.

Music_Change.wav

Music_Initial.wav
| deviated slightly from the original transition markers and logic requirements. This was

Music_Loss.wav . . s . " -
- primarily because the layout of the game area made it impossible to transition directly from
Music_Win.wav the "initial" music to the win or loss zones; one must pass through the "change" music area

to enter the win or loss areas.

Game Audio: Final Project: FMOD Creation & Integration

Logic Map for Music Transitions

&

= ‘change’ parameter value

Via this style of layout, the
player must pass through the
‘Change’ area before they can
reach the ‘Win’ or ‘Loss’ areas.

Init Music Modified to Start Immediately

1]

A 4

a

Due to this logical mapping, the
'Win' or 'Loss' stingers cannot be

Logic going back to Init Music
Change Music modified via Extra Logic described

on Next Slide triggered from the 'Init' area.
2 v Consequently, the logic
presented in this and the
Win Music previous FMOD slide adheres to
the established flow of the

game’s physical layout.

Very Rough Overlay

Game Audio: Final Project: FMOD Creation & Integration

| intentionally added a new floating-point distance parameter in FMOD to craft
a dramatic crescendo for the 1950s-style crash site discovery. Although I'm
aware that this effect could potentially be achieved using a 2D/3D timeline and
emitter setup, | chose to understand this challenge through coding within this
assignment.

The resulting audio effect is that as the player's ship approaches the crash
site, the volume of the dramatic "initial" music increases, and it decreases as
the distance grows. Furthermore, the code | developed allows for a seamless
transition back to the dramatic "initial" music from the "change" music,
contingent on the player's interaction with a collider cube and their proximity to
the crash site.

The code is discussed in the "Extra" section of this write-up.

Game Audio: Final Project: FMOD Creation & Integration

A Value Seek Speed A Value Seek Speed 2)Value Seek Speed

‘change” Parameter “‘InitPlayDistance” Parameter “speed” Parameter

The seek speeds for the "change" and my custom "InitPlayDistance" parameter must be instantaneous. For the "change"
parameter, this is because it represents a discrete event, shifting from one numeric value to another, which in turn alters the music
state. As for the "InitPlayDistance" parameter, it's a real-time value critical for adjusting the volume of the "initial" music associated
with the crash site.

Conversely, the "speed" parameter required a bit more flexibility in its values to provide a sense of acceleration and deceleration in
the ship's engine sounds, allowing for a fast but gradual increase or decrease in volume.

Please note
that both the
ship's flying
audio and the
music are
affected by
the reverb
zones. Since
moving the
ship is
required to
hear the
effect, adding
the music was
thought to
enhance the
demonstration
of the reverb
zone's impact.

Game Audio: Final Project: FMOD Creation & Integration

Group Group

Music PlayerCharacter

£ Reverh £ Reverb

4 Reverb

For each
“group” they
have the “Wet
Level” set to
‘off when the
snapshots are
not active.

» 0 9 © 0o ¢ €
9 © ® ©

€

Reverb Snapshot (Left House)

x i Reverb

@

30 ©® » @

Please note that the reverb settings are intentionally
exaggerated to demonstrate the "reverb snapshot"
requirement of the assignment.

Routing VCAs

Q-

Snapshots

as

For the "Left House," the reverb zone encompasses the entire area of the

destroyed house.

B v FMOD Studio Event Emitter
Play Event Trigger Enter
Stop Event Trigger Exit
Collision Tag Player

Event snapshot:/LHReverb

Initial Parameter Values
Advanced Controls
ole Data

Fadeout When S v

Allow Non-Rigidbody [

Game Audio: Final Project: FMOD Creation & Integration
Reverb Snapshot (Right House)
Please note TR e W ’\5{? Ny Z Eriday

that both the Al ° 8500 00| X g o B
ship's flying > \ ()) ! " \ -

audio and the e P — . Ee . S |
music are s e © @ © @ o 7N ;
affected by .
the reverb

zones. Since —~

moving the (Lo]fure i sow Jf e \ o
ship is
g » O co ce

required to

hear the » » @ <
effect, adding 930w © ® 9 ©

the music was

thought to > - i ol N
enhance the Please note that the reverb settings are intentionally & ‘; 4
demonstration exaggerated to demonstrate the "reverb snapshot” L4 ﬁ:i ¥ . B
of the reverb requirement of the assignment. i " B

zone's impact. For the "Right House," the reverb zone is limited to the area under the roof, demonstrating

how the ship can enter the open area to become reverb-free again.

Routing VCAs Snapshots

Q-

B v FMOD Studio Event Emitter

Trigger Enter
Trigger Exit -
Collision Tag Player

@ LHReverb Event snapshot:/RHReverb
For each @ RHReverbh Initial Parameter Value

“group” they
have the “Wet
Level” set to
‘off when the Once
SnapShOtS are Allow Non-Rigidbody [

not active.

Advanced Controls
Preload Sam

v Fadeout V

Game Audio: Final Project: FMOD Creation & Integration
Fire at the Crash Site (FMOD 3D Timeline)

Fire

Timeline

Logic Tracks

B v FMOD Studio Event Emitter * i This was simply an extra 3D Audio Emitter placed in world

Play Event Object Start with a looping fire sound.

Stop Event None
Event event:/Fire
Override Attenuation

Initial Parameter Values
Advanced Controls

Preload Sample Data

Allow Fadeout When S v

Trigger Once

Allow Non-Rigidbody [

Events

Q-

Banks Assets

3DRoom
Ambience
CowPickup
Fire

Flying
Friend
LossFX

Music

v Extras (Script)

Game Objects
Element 0
Element 1
Element 2
Element 3
Element 4
Element 5
Element 6
Element 7

Box Collider @ Win Area (Box Collider)

Game Audio: Final Project: FMOD Creation & Integration

One-Shot SFX Played when Win Occurs

win...

Timeline

ect> gameObjects;

r boxCollider;

Engage()
boxCollider.enabled ;
foreach ((t go in gameObjects)

go.SetActive(3

lanager.instance.GoIdle();

if (other.gameObject.CompareTag ("wincube"))

{

playbackState = 2;

FMODUnity.RuntimeMana .PlayOneShot(winSound);
musicEv.setParameterByName("Change", playbackState);
GameStateManager.instance.winExtra.Engage();

In summary, the updated code in the player controller triggers the one-shot SFX audio,
activates the particle effect, disables a box collider to prevent multiple triggers, sets all
GameObjects in the list to active (the cows and a collision blocker), and transitions "Nerk's
Friend's" animation to an idle state, stopping her from waving and making her stand idle.

Game Audio: Final Project: FMOD Creation & Integration
One-Shot SFX Played when Loss Occurs

Events Banks Assets

Qv
3DRoom
Ambience
CowPickup
Fire
Flying

Friend

B ~ Extras (Script)

Game Objects
Element 0
Element 1
Element 2 _Gravestone_04

ent 3 A _Ballista_Mobile_01
lement 4 ICFX_Explosion_02

Box Collider @ Lose Area (Box Collider)

Timeline

Logic Tracks

ject> gameObjects;

r boxCollider;

Engage()
boxCollider.enabled ;
foreach (G ct go in gameObjects)

go.SetActive(3

lanager.instance.GoIdle();

if (other.gameObject.CompareTag ("losecube"))

{
playbackState = 3;
FMODUnity.RuntimeManager.PlayOneShot(lossSound);
musicEv.setParameterByName("Change", playbackState);
GameStateManager.instance.lossExtra.Engage();

In summary, the updated code in the player controller triggers the one-shot SFX audio,
activates the particle effect, disables a box collider to prevent multiple triggers, sets all
GameObjects in the list to active (the gravestones, ballista and a collision blocker), and for
completeness transitions "Nerk's Friend's" animation to an idle state, stopping her from waving
and making her stand idle.

Game Audio: Final Project: FMOD Creation & Integration
“Nerk’s Friend” (Code Triggered FMOD 3D Timeline)

Frie...

Timeline

Logic Tracks

v (Friend)

Female Voice Event event:/Friend

Essentially, whenever the animation switches
to a two-handed wave, a call is made to the
GameStateManager, triggering the FMOD
Event Emitter on the "Nerk's Friend"
GameObject.

| Any State]

Exit

Admittedly, the Entry
process is
somewhat
complex.

regel
fenalelioicetvant;
«
dnstance PlayFriend()
ion Public Methods
PlayFriend()

friendEmitter.Play();

mixamo_wave_one_hand

mixamo_idle

B - Game State Manager (Script)

Loss Extra B Loss Extras (Extras)

B Win Extras (Ext

B Nerk's Friend (Studio Event Emit™ S
tor » Nerk's Friend (Animator) (o]

Reverb Emitter 2

Win Extra

Friend Emitter

B LH Reverb (Studio Event Emitte @
B RH Reverb (Studio Event Emitte @

Element 0
Element 1

+ -

mixamo_wave_two_hands

| navigated the Mixamo animation
pipeline to integrate animations with
my LowPoly Characters successfully.

FV_Dude_Come_Here_01.wav

Friend | Eleven
Labs

FV_Dude_Over_Here_Man_01.wav
FV_Er_Ma_Gerd_01.wav
FV_Hey_Hello_01.wav
FV_Hey_Right_Here_01.wav
FV_Over_Here_01.wav

LV_Over_Here_02.wav

| utilized my license for ElevenLabs to
create an Al-powered female voice
for the lines above.

v FMOD Studio Event Emitter
None

Stop Event None

Event event:/Friend

s

Initial Parameter Valugs

de Attenuation v Min 3

Advanced Controls
Preload Sar
Allow Fadeoul

Trigger Once

Player Controller SpaceShip - Player (Player Co

Allow Non-Rigidbody

Game Audio: Final Project: Complete the Final Project: Extras: Cow Pickup

¥ Cow Pickup

D Cow Pickup
D Model C

Move New Folder

Move To y Trigger Enter
Assign to Bank BRS
Remove from Bank

Add to Defaults n Tag Player
Refresh Output Format

set Color

Assign toTag

Copy Path

Copy GUID

Find References... 3

Copy

Duplicate

Delete

@ v Cow Pickup Static ~
~ Tag Pickup Layer Default

if (other.gameObject.CompareTag ("Pickup"))
{

other.GetComponent<Snack>() .RemoveSnack(); | won't delve into the specifics of the

code below, but in essence, when
the RemoveSnack() method is
invoked, it disables the collider,

| created a new prefab of a cow that has the same turns off the renderer for the cow
tag as the project included code so that all | had to model, and then initiates a particle
do was trigger my new code from the original code effect that coincides with the

in the “PlayerController” class. GameObiject's destruction.

System.Collections;
UnityEngine;

cse108

The path of the new event timeline

needed to align with the specifications iate P ; ten particlesysten;
set in the "play event" ‘trigger enter’ i taCol e ot ias;
within the FMOD Studio Event Emitter D e

component. ; Removesnack()

collider.enabled =

renderingObjects.SetActive(H
particleSystem.Play();

Whenever there are changes of this S R S (e
nature, Unity provides a scaner for |
updates following a complete build in ey
FMOD. This procedure is quite ‘ if (iparticlesysten. isPlaying)
straightforward and is facilitated by a | bestreyComenniect;

or WaitForParticleSystem()

(particleSystem.main.duration + 0.1f);

}

pop-up user interface within the project.

Game Audio: Final Project: Extras: “Initial” Music Work Product

[SerlallzeFleld]
e GameObject shipEngine; | added and
[Se ializeField] >
e GameObject playCubeGO; mOdl:ﬂed the
float tempVel = Of; location of a
oat distanceToCrashMusic = Of; few variables.

FMOD.Studio.PLAYBACK_STATE play_state;
lic int playbackState = 0;

I

musicEv = FMODUnity.RuntimelManager.CreateInstance(music);

flyingEv = FMODUnity.RuntimeManager.CreateInstance(flying);

flyingEv.setParameterByName("speed”, 0);
flyingEv.start();

Here I'm making sure the flyingEv is setup properly and the initial
speed is set to 0 and started.

B - Player Controller (Script)

B
Speed 25
Music event:/Music
Flying event:/Flying
Input Sound event:/CowPickup

Ship Engine @ Engine
Play Cube GO @ Play Cube

Distance To Crash Musi 0
Playback State 0 scene’s hierarchy but nothing worth noting as ultra important.

FI“IOD Studio.EventInstance flyingEv;

s
d
m
i

{

{

}

FMODUnlty EventReference Flying; Modified the name of the Eventinstance from

RIS LSV ELER rolling to flying for clarity. FYI the
EventReference isn’'t used nor needed.

hipEngine.transform.localScale = Vector3((tempVel / 100f), (tempVel / 100f), (tempVel / 100f));
istanceToCrashMusic = Vector3.Distance(.transform.position, playCubeGO.transform.position);
usicEv.setParameterByName("InitPlayDistance", distanceToCrashMusic)

f (distanceToCrashMusic <= 9.37)

if (playbackState != 0)
{
playbackState = 0;

musicEv.setParameterByName("Change", playbackState);
musicEv.start();

Inside the FixedUpdate() method, | inserted code that essentially utilizes
the speed, stored in the variable ‘tempVel for temporary velocity, to
determine the size of the particle effect underneath the spaceship. This
code also assigns the distance to a new variable ‘distanceToCrashSite’
that | pass to FMOD. | introduced another variable named ‘playbackState’
to store the value corresponding to the "change" parameter in FMOD. This
setup allows me to revert to the "initial" music from the "change" music,
contingent on the FMOD “change” logic, the ‘playbackState’ and the ship's
distance from the crash site, which is defined by the location of the original
play cube.

if (other.gameObject.CompareTag ("ChangeCube")) Here |S the S“ghtly modlfled

playbackstate = 1; “ChangeCube” logic but with the
musicEv.setParameterByName("Change", playbackState); . e
playbackState being utilized.

There were a few other items | changed both in code and the

Game Audio: Final Project: Extras: Game’s Hierarchy

Cleaned up the Game’s Hierarchy and Created a New Scene (from previous)

= Hierarchy 5 & Environment & Special Audio Areas
i ;Nerk : @ Landing Site 2 Ambience Emitter
e beaoma i | & Pickups @ Crash Site
0 EventSystem [@ Back Wall Ea Play Cube
%I\GA:;?eUSltate Manager ﬁa Left Wall @ Change Cube
@Spacc.aShipf Player | @ Mid Fence E‘B (Reverb) | eft House
&g Terrain & Right Wall & 3DRoom

9] Emrir.onmen.t = tE
@ Special Audio Areas @ ront rence EE] {Reverb) nght House
& Nerk's Friend

D Outside Areas

collections of GameObjects and their overall purpose. @ DU sts

0 Win Extras Q@ Win Area
& Loss Extras D Lose Area

The game's hierarchy was restructured according to the

. 7 . - I] Made sure the correct scene was included in the
@ Build Settings - O X build settings for appropriate build procedures.
Build Settings :

Scenes In Build
v DSM/Scenes/Nerk

Game Audio: Final Project: Extras: Very Simple Ul

: [1] to Reset the Game

N7 a

@ Main Ul W v Canvas Scaler

D Panel

@ Ul Text (TMP)
+ TextMeshPro - Text (Ul) 0 i i Reference Resolution X 1920 Y 1080
Text Input S Screen Match Mode Match Width Or Height

[ESC] To E e: t ame F‘\Aatch O
Width Height

Ul Scale Mode Scale With Screen Size

Ex— o Reference Pixels Per L 100

Main Settings

SDF (TMP_Font © The Ul scales based on the runtime resolution. The "Reference Resolution" serves precisely
nsSOF Matenal 4 as its name suggests: it's what Unity uses as a benchmark when | constructed the very
N ESH feb] FABIESC simple Ul, ensuring it knows how and what to scale accurately.

Game Audio: Final Project: Extras: Splash Screen

Please note that a "Pro" license for Unity is required to perform some of the actions described here.

@ Project Settings

© Inspector

Flying Sau

Texture Type Sprite (2D and Ul)

Sprite Mode Single
Pixels Per Unit 100
Mesh Type Full Rect
Extrude Edges
Pivot Center

Generate Physics S| v

Open Sprite Editor

ement

Edit t? "PFOJ'?Ct Settings” Replace this area with your Disabling the "Unity Logo" Set the logo image's "Texture Type" to "Sprite (2D and Ul)," and under
then “Player loading image. option is likely only available "Sprite Mode," the "Mesh Type" should be adjusted to "Full Rect."
with "Pro" licenses.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

