
Game Audio: Final Project
Dave Maynard

Medieval Encounters: The Quest for Nerk
“1950’s Aliens Invade the Kingdom”

Custom Midjourney AI Generated Artwork

Game Audio: Final Project
Dave Maynard

Turned this into that ☺

in 2 Weeks

NOTE
You can hit the [ESCape] key to exit this assignment program.

You can also hit the [1] key to reset the level without exiting.

I've incorporated a Singleton

Game State Manager class into

the project, which is now part of

the game's hierarchy. It's designed

to detect when the [Escape] key is

pressed and ensures the program

exits gracefully. It’s also designed

to detect when the [1] key is

pressed to reset the level without

exiting the program.

For those who might be curious, these methods are how I ensure

that all FMOD audio, including the music and the reverb zones, are

forced to stop and the level reloads.

These are merely code snippets; the complete code encompasses much more than what is presented here, simplified for the sake of clarity.

Game Audio: Final Project
Dave Maynard

Game Audio: Final Project
Story of “1950’s Aliens Invade the Kingdom”

Our player lands on a

planet with a rich

Kingdom. He’s looking

for his buddy “Nerk”

who came here last

Wednesday.

He’s sad to find his buddy

crashed and his ship is on fire!

But maybe he’s around

somewhere.

But YAY there are cows

to abduct on this planet.

He’s happy again!

And there are lots of places to explore!

There are also places throughout that are special nooks that give everyday sounds a playful twist!

Game Audio: Final Project
Story of “1950’s Aliens Invade the Kingdom”

If our player finds Nerk’s friend with all the snacks he

WINS !

If our player finds the graveyard he is locked in and LOSES!

Game Audio: Final Project: FMOD Creation & Integration

The 3D room features a fountain that

plays a looping water stream sound.

Additionally, there are 10 sporadic

dripping sounds that are played by the

scatterer instrument.

I adjusted the emitter distances in Unity

by using the override attenuation feature.

The ambient timeline includes a continuous loop of park sounds with

no human voices. Additionally, it features two scatterer instruments

One randomly plays seven distinct bird calls, and another that

randomly emits five varieties of wind sounds. I have fine-tuned the

parameters of the scatterer instruments, such as polyphony,

minimum and maximum spawn intervals, and minimum and

maximum scatter distances, to achieve a blend that I thought best fit

the scene.

Game Audio: Final Project: FMOD Creation & Integration

Master Track Yes, that is me making the “moo sounds” for the cow ☺ Utilizing the multi-

instrument, I incorporated six distinct "moo" sounds and combined them with a

single teleport sound that features three varied "whoosh" effects.

I did rename this Event timeline, the details of which, including the rationale, are discussed

in the "Extra" section of this write-up.

Made sure the

“CowPickup” event was

in the Master Bank.

Game Audio: Final Project: FMOD Creation & Integration

Yes, that is also me making the main engine

sounds using my mouth ☺ along with a few other

sounds baked in. I employed the scatterer

instrument to integrate five unique engine glitching

sounds.

By using the ship's speed data from the game

engine, I automated the adjustment of the overall

volume(s) and the spawn rate of the engine

glitches.

Made sure the “Flying”

event was in the Master

Bank.

Game Audio: Final Project: FMOD Creation & Integration

Following the specifications of the assignment, I created an Initial Music piece, Change

Music, and both Win and Loss Stingers. My approach to the compositions was influenced

by the style of 1950s science fiction, with a comedic twist.

I deviated slightly from the original transition markers and logic requirements. This was

primarily because the layout of the game area made it impossible to transition directly from

the "initial" music to the win or loss zones; one must pass through the "change" music area

to enter the win or loss areas.

Game Audio: Final Project: FMOD Creation & Integration

Logic Map for Music Transitions

Init Music

Change Music

Win Music

Loss Music

Modified to Start Immediately

Logic going back to Init Music

modified via Extra Logic described

on Next Slide

1 0

2

3

= ‘change’ parameter value Init

Change

WinLoss

Very Rough Overlay

Via this style of layout, the

player must pass through the

‘Change’ area before they can

reach the ‘Win’ or ‘Loss’ areas.

Due to this logical mapping, the

'Win' or 'Loss' stingers cannot be

triggered from the 'Init' area.

Consequently, the logic

presented in this and the

previous FMOD slide adheres to

the established flow of the

game’s physical layout.

Game Audio: Final Project: FMOD Creation & Integration

I intentionally added a new floating-point distance parameter in FMOD to craft

a dramatic crescendo for the 1950s-style crash site discovery. Although I'm

aware that this effect could potentially be achieved using a 2D/3D timeline and

emitter setup, I chose to understand this challenge through coding within this

assignment.

The resulting audio effect is that as the player's ship approaches the crash

site, the volume of the dramatic "initial" music increases, and it decreases as

the distance grows. Furthermore, the code I developed allows for a seamless

transition back to the dramatic "initial" music from the "change" music,

contingent on the player's interaction with a collider cube and their proximity to

the crash site.

The code is discussed in the "Extra" section of this write-up.

Init

Change

Game Audio: Final Project: FMOD Creation & Integration

“change” Parameter “InitPlayDistance” Parameter “speed” Parameter

The seek speeds for the "change" and my custom "InitPlayDistance" parameter must be instantaneous. For the "change"

parameter, this is because it represents a discrete event, shifting from one numeric value to another, which in turn alters the music

state. As for the "InitPlayDistance" parameter, it's a real-time value critical for adjusting the volume of the "initial" music associated

with the crash site.

Conversely, the "speed" parameter required a bit more flexibility in its values to provide a sense of acceleration and deceleration in

the ship's engine sounds, allowing for a fast but gradual increase or decrease in volume.

Game Audio: Final Project: FMOD Creation & Integration

Game Audio: Final Project: FMOD Creation & Integration

Reverb Snapshot (Left House)

For each

“group” they

have the “Wet

Level” set to

‘off’ when the

snapshots are

not active.

Please note that the reverb settings are intentionally

exaggerated to demonstrate the "reverb snapshot"

requirement of the assignment.

For the "Left House," the reverb zone encompasses the entire area of the

destroyed house.

Please note

that both the

ship's flying

audio and the

music are

affected by

the reverb

zones. Since

moving the

ship is

required to

hear the

effect, adding

the music was

thought to

enhance the

demonstration

of the reverb

zone's impact.

Game Audio: Final Project: FMOD Creation & Integration

Reverb Snapshot (Right House)

For each

“group” they

have the “Wet

Level” set to

‘off’ when the

snapshots are

not active.

Please note that the reverb settings are intentionally

exaggerated to demonstrate the "reverb snapshot"

requirement of the assignment.

For the "Right House," the reverb zone is limited to the area under the roof, demonstrating

how the ship can enter the open area to become reverb-free again.

Please note

that both the

ship's flying

audio and the

music are

affected by

the reverb

zones. Since

moving the

ship is

required to

hear the

effect, adding

the music was

thought to

enhance the

demonstration

of the reverb

zone's impact.

Game Audio: Final Project: FMOD Creation & Integration

Fire at the Crash Site (FMOD 3D Timeline)

This was simply an extra 3D Audio Emitter placed in world

with a looping fire sound.

Game Audio: Final Project: FMOD Creation & Integration

One-Shot SFX Played when Win Occurs

Win

In summary, the updated code in the player controller triggers the one-shot SFX audio,

activates the particle effect, disables a box collider to prevent multiple triggers, sets all

GameObjects in the list to active (the cows and a collision blocker), and transitions "Nerk's

Friend's" animation to an idle state, stopping her from waving and making her stand idle.

Game Audio: Final Project: FMOD Creation & Integration

One-Shot SFX Played when Loss Occurs

Loss

In summary, the updated code in the player controller triggers the one-shot SFX audio,

activates the particle effect, disables a box collider to prevent multiple triggers, sets all

GameObjects in the list to active (the gravestones, ballista and a collision blocker), and for

completeness transitions "Nerk's Friend's" animation to an idle state, stopping her from waving

and making her stand idle.

Game Audio: Final Project: FMOD Creation & Integration

“Nerk’s Friend” (Code Triggered FMOD 3D Timeline)

I navigated the Mixamo animation

pipeline to integrate animations with

my LowPoly Characters successfully.

I utilized my license for ElevenLabs to

create an AI-powered female voice

for the lines above.

Essentially, whenever the animation switches

to a two-handed wave, a call is made to the

GameStateManager, triggering the FMOD

Event Emitter on the "Nerk's Friend"

GameObject.

Admittedly, the

process is

somewhat
complex.

Game Audio: Final Project: Complete the Final Project: Extras: Cow Pickup

I created a new prefab of a cow that has the same

tag as the project included code so that all I had to

do was trigger my new code from the original code

in the “PlayerController” class.

The path of the new event timeline

needed to align with the specifications

set in the "play event" ‘trigger enter’

within the FMOD Studio Event Emitter

component.

Whenever there are changes of this

nature, Unity provides a scaner for

updates following a complete build in

FMOD. This procedure is quite

straightforward and is facilitated by a

pop-up user interface within the project.

I won't delve into the specifics of the

code below, but in essence, when

the RemoveSnack() method is

invoked, it disables the collider,

turns off the renderer for the cow

model, and then initiates a particle

effect that coincides with the

GameObject's destruction.

Game Audio: Final Project: Extras: “Initial” Music Work Product

I added and

modified the

location of a

few variables.

Here I’m making sure the flyingEv is setup properly and the initial

speed is set to 0 and started.

Modified the name of the EventInstance from

rolling to flying for clarity. FYI the

EventReference isn’t used nor needed.

Inside the FixedUpdate() method, I inserted code that essentially utilizes

the speed, stored in the variable ‘tempVel’ for temporary velocity, to

determine the size of the particle effect underneath the spaceship. This

code also assigns the distance to a new variable ‘distanceToCrashSite’

that I pass to FMOD. I introduced another variable named ‘playbackState’

to store the value corresponding to the "change" parameter in FMOD. This

setup allows me to revert to the "initial" music from the "change" music,

contingent on the FMOD “change” logic, the ‘playbackState’ and the ship's

distance from the crash site, which is defined by the location of the original

play cube.

Here is the slightly modified

“ChangeCube” logic but with the

playbackState being utilized.

There were a few other items I changed both in code and the

scene’s hierarchy but nothing worth noting as ultra important.

Game Audio: Final Project: Extras: Game’s Hierarchy
Cleaned up the Game’s Hierarchy and Created a New Scene (from previous)

The game's hierarchy was restructured according to the

collections of GameObjects and their overall purpose.

Made sure the correct scene was included in the

build settings for appropriate build procedures.

Game Audio: Final Project: Extras: Very Simple UI

The UI scales based on the runtime resolution. The "Reference Resolution" serves precisely

as its name suggests: it's what Unity uses as a benchmark when I constructed the very

simple UI, ensuring it knows how and what to scale accurately.

Game Audio: Final Project: Extras: Splash Screen
Please note that a "Pro" license for Unity is required to perform some of the actions described here.

Edit to “Project Settings”

then “Player”
Disabling the "Unity Logo"

option is likely only available

with "Pro" licenses.

Replace this area with your

loading image.

Set the logo image's "Texture Type" to "Sprite (2D and UI)," and under

"Sprite Mode," the "Mesh Type" should be adjusted to "Full Rect."

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

